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Allylation and benzylation at the a-carbon of a-methylated acetoacetyl (2-methyl-3-oxobutanoyl) group
incorporated into the 2-OH of methyl 6-deoxy-3,4-O-(tert-butyldimethylsilyl)-a-D-glucopyranoside pro-
vided the respective a,a-differentially alkylated acetoacetyl derivatives, both with high diastereoselectiv-
ity. Thus-obtained doubly alkylated products possess an all-carbon quaternary stereogenic center with an
absolute stereochemistry opposite to that introduced by using the 4-O-acetoacetyl regioisomer as the
alkylation substrate.

� 2008 Elsevier Ltd. All rights reserved.
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Stereoselective access to enantiomerically enriched building
blocks with an all-carbon stereogenic center is one of actively
investigated subjects in the field of current synthetic organic
chemistry. For this subject, a number of sophisticated asymmetric
approaches have been realized by using transition-metal-based
chiral catalysts,1 chiral auxiliaries,2 or organocatalysts.3 Especially,
the building blocks with a stereochemically defined all-carbon
quaternary center can be used as structural elements in the syn-
thesis of biologically intriguing compounds.

During the past several years, we had demonstrated the syn-
thetic utility of methyl 6-deoxy-2,3-di-O-(tert-butyldimethylsi-
lyl)-a-D-glucopyranoside 1 (Scheme 1), readily prepared from
methyl a-D-glucopyranoside, as a chiral template for stereoselec-
tive carbon–carbon bond-forming reactions.4 In a recent paper,5

we reported stereoselective sequential alkylation at the a-carbon
of the 4-O-acetoacetyl (3-oxobutanoyl) derivative 2, which was
prepared by the acylation of 1. The base-mediated sequential
a-alkylation of 2 with different carbon electrophiles such as MeI,
then benzyl bromide or allyl bromide eventually provided 4 or 6
via the initially formed mono-C-methylated diastereomeric mix-
ture 3. The second alkylation proceeded with remarkable diastere-
oselectivity in both cases.6 The stereochemical assignment of the
thus-introduced all-carbon quaternary center in the alkylated
product 4 or 6 was ascertained after converting 4 or 6 into the
ll rights reserved.

o).
known stereochemically defined pyrazoline derivative 5 or 7,
respectively.

To further demonstrate the utility of our sugar-based chiral
template approach for access to enantiomerically enriched build-
ing blocks, we have sought other sugar-based templates, which
can realize highly stereoselective carbon–carbon bond-forming
reactions. The results revealed another D-glucose-based template
9 (Scheme 2). Herein, we describe the synthetic utility of 9, exem-
plified by the a-alkylation of the 2-methyl-3-oxobutanoyl ester de-
rived from 9. The template 9 was prepared efficiently via stepwise
migration of the two tert-butyldimethylsilyl (TBS) groups attached
on O-3 and O-2 in 1 to the O-4 and O-3 positions by sequential
treatment of two kinds of bases, namely, the TBS group on O-3
migrated to the 4-OH group by the treatment of 1 with NaOMe,
3 4 R: -CH2Ph
6 R: -CH2-CH=CH2

5 R: -CH2Ph
7 R: -CH2-CH=CH2

Scheme 1. Stereoselective a,a-dialkylation of 4-O-acetoacetate 2 derived from 1.5
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Scheme 4. Removal of the sugar template from 12. Reagents and conditions: (a)
6 M aq HCl/THF = 1:1, rt; (b) NaOEt, EtOH, rt, 90% for 15 and 97% for 16 for 2 steps.
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Scheme 5. Conversion of 12 or 13 into 18 or 19, respectively, for determination of
the enantiomeric excess of the quaternary stereogenic center. Reagents and
conditions: (a) H2, Pd/C, MeOH; (b) NH2NH2�H2O, EtOH, 140 �C in a sealed tube,
82% of 18 and 83% of 9 for 2 steps; (c) NH2NH2�H2O, EtOH, 140 �C in a sealed tube,
quantitative yield.
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Scheme 2. Synthesis of 9. Reagents and conditions: (a) NaOMe, MeOH, rt, 70% (91%
after one recycle); (b) LiHMDS, THF, rt, 85%.
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providing 87 in 70% yield and 30% of 1 was recovered. The recov-
ered 1 was subjected to the same NaOMe treatment to obtain addi-
tional 8. Finally, the 2,4-di-O-TBS derivative 8 was obtained in an
overall yield of 91% after one recycle. Then the treatment of 8 with
lithium hexamethyldisilazide (LiHMDS) solely provided the 3,4-di-
O-TBS derivative 9 in a good yield of 85%.8 None of the 2,3-di-O-TBS
derivative 1 was found in the reaction mixture.9 Therefore, in the
case of 8, the silyl migration from O-2 to O-3 occurs exclusively un-
der the basic conditions employed. Although we have no firm evi-
dence for these facile silyl-group migrations from O-3 to O-4, then
from O-2 to O-3, we presume that the 3,4-di-O-TBS derivative 9 is
the least spatially congested regioisomer, compared with 1 or 8.

We explored the potential of 9 as a chiral template, exemplified
by the a-alkylation of its 2-O-(2-methyl-3-oxobutanoyl) derivative
11. The preparation of 11 and its a-alkylation with two electro-
philes are summarized in Scheme 3.10 Heating 9 with 2,2,5,6-tetra-
methyl-1,3-dioxin-4-one11 10 in refluxing o-xylene provided 11 as
a diastereomeric mixture.12 This mixture 11 was subjected to
a-alkylation with allyl bromide using tert-BuOK as the base, pro-
viding the a,a-differentially alkylated acetoacetate 12 in 93% yield
with almost complete diastereoselectivity.13,14 Analogously, the
benzylation of 11 provided the a-benzylated product 13 in 79%
yield as an apparently single diastereomer.15

Then, we determined the stereochemistry of the newly intro-
duced quaternary stereogenic center incorporated into the allylated
product 12 by detachment of the optically active a-methyl-a-allyl-
3-oxobutanoyl moiety from the sugar template. For this purpose,
two TBS-protecting groups in 12 were first removed by acid hydro-
lysis, providing 14 (Scheme 4). The sugar template was smoothly
removed by alcoholysis of 14 with NaOEt in EtOH, providing ethyl
(S)-2-allyl-2-methyl-3-oxobutanoate (15) and methyl 6-deoxy-a-
D-glucopyranoside (16), both in excellent yields.16 The levorotatory
sign for 15 [½a�20

D �25.4 (c 1.18, CHCl3)] confirmed its absolute ste-
reochemistry to be (S) by comparison with the reported [a]D for
the (S)-enantiomer.17 Consequently, the chirality of the asymmetric
all-carbon quaternary center in 12 was opposite to that introduced
in the allylation executed for the substrate 3 during our previous
study.5

Next, we determined the enantiomeric excess (ee) of the newly
introduced stereogenic center in 12 accurately by chiral HPLC anal-
ysis. The allyl group in 12 was first hydrogenated to a propyl group,
providing 17 (Scheme 5).18 The hydrazinolysis of 17 at 140 �C19

provided a pyrazolone derivative 18,20 and the sugar template 9
was recovered efficiently. Based on the chiral HPLC measurement
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Scheme 3. Synthesis of 2-O-(2-methyl-3-oxobutanoyl) derivative 11 and its a-
alkylation with two electrophiles. Reagents and conditions: (a) 10, o-xylene, reflux,
92%; (b) for 12: allyl bromide, tert-BuOK, THF, �78 to 5 �C, 93%; for 13: benzyl
bromide, tert-BuOK, THF, �78 to 0 �C, 79%.
of 18, the ee of the quaternary carbon center in 18, and thus that
in 12, was determined to be 95%.21

Analogously, the hydrazinolysis of 13 provided a pyrazolone
derivative 19, accompanied by isolation of 9. The absolute stereo-
chemistry of the quaternary carbon was determined to be (S) by
comparison with the reported [a]D value.22 The ee of 19 was deter-
mined by chiral HPLC analysis to be 89%.23 As in the case of the for-
mation of 12, the a-benzylation of 11 provided 13 with an all-
carbon quaternary center, the absolute stereochemistry of which
was opposite to that obtained through our previous approach using
3.5

We propose the transition state TS-A depicted in Scheme 6 for
the excellent stereoselectivity observed in the a-alkylation of 11,
together with the transition state TS-B for our previous results.5

In the transition state TS-A, it is most likely that the (Z)-potas-
sium-chelated enolate formed by the tert-BuOK-treatment of 11
was attacked by alkyl halide to provide 12 or 13. Furthermore,
the attack of the electrophile to the enolate predominantly oc-
curred from the less-congested front side as shown (Si-face of
the a-carbon to the carbonyl in the enolate form), because the rear
side was well shielded by the bulky TBSO group attached at C-3.
This phenomenon was the complete reverse of what we observed
using substrate 3 via transition state TS-B.5 At the present time,
however, we do not have any reasonable explanation for the higher
diastereoselectivity observed in the attack of sterically less-con-
gested allyl bromide, compared with that observed in the attack
of benzyl bromide.24
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These a,a-differentially alkylated 3-oxobutanoic acid ester 15
and pyrazolone derivatives 18 and 19 are expected to serve as ver-
satile building blocks for the synthesis of enantiomerically
enriched carbocyclic and heterocyclic compounds with a stereo-
chemically defined all-carbon quaternary stereogenic center. We
had demonstrated the synthetic utility of similar building blocks
in our previous papers.4k,5

In summary, we have further developed our sugar-based chiral
template approach for the stereoselective carbon–carbon bond-
forming reaction, exemplified by the design of a new and effective
template, that is, methyl 6-deoxy-3,4-O-(tert-butyldimethylsilyl)-
a-D-glucopyranoside. The a-allylation and a-benzylation of the
2-O-(2-methyl-3-oxo-butanoyl) derivative of the sugar template
provided the respective a,a-differentially dialkylated products in
remarkably high diastereoselectivity. The direction of the electro-
phile attack is highly controlled by the bulky silyl ether located
at C-3 of the sugar template. These facts complement our previous
results on the stereoselective introduction of the a,a-differentially
alkylated quaternary center achieved using the 4-O-acetoacetate
regioisomer.25
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24. A referee suggested the participation of anomeric OMe for the potassium-

chelate formation. Although we have no evidence which rules out this
possibility, we insist on the presence of the chelate structure depicted in
Scheme 6 by the following reason. If the potassium-chelate forms between the
OMe and enolate, the sterically less-congested space might turn out to be Re-
face (not the Si-face) of the a-methylated enolate.

25. As described previously,4k,5 the highly stereoselective introduction of the (S)-
quaternary carbon center into the acetoacetate ester 2 could not be attained by
changing the order of the addition of the electrophiles, that is, allylation (or
benzylation) and then methylation.


